Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.067
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 236, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724995

RESUMO

Increased proinflammatory cytokines and infiltration of inflammatory cells in the stroma are important pathological features of type IIIA chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS-A), and the interaction between stromal cells and other cells in the inflammatory microenvironment is closely related to the inflammatory process of CP/CPPS-A. However, the interaction between stromal and epithelial cells remains unclear. In this study, inflammatory prostate epithelial cells (PECs) released miR-203a-3p-rich exosomes and facilitated prostate stromal cells (PSCs) inflammation by upregulating MCP-1 expression. Mechanistically, DUSP5 was identified as a novel target gene of miR-203a-3p and regulated PSCs inflammation through the ERK1/2/MCP-1 signaling pathway. Meanwhile, the effect of exosomes derived from prostatic fluids of CP/CPPS-A patients was consistent with that of exosomes derived from inflammatory PECs. Importantly, we demonstrated that miR-203a-3p antagomirs-loaded exosomes derived from PECs targeted the prostate and alleviated prostatitis by inhibiting the DUSP5-ERK1/2 pathway. Collectively, our findings provide new insights into underlying the interaction between PECs and PSCs in CP/CPPS-A, providing a promising therapeutic strategy for CP/CPPS-A.


Assuntos
Células Epiteliais , Exossomos , MicroRNAs , Prostatite , Células Estromais , Masculino , Exossomos/metabolismo , Prostatite/genética , Prostatite/patologia , Prostatite/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Estromais/metabolismo , Células Estromais/patologia , Animais , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Próstata/patologia , Próstata/metabolismo , Dor Pélvica , Inflamação/genética , Inflamação/patologia , Camundongos , Sistema de Sinalização das MAP Quinases
2.
Cells ; 13(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38727314

RESUMO

During the secretory phase of the menstrual cycle, endometrial fibroblast cells begin to change into large epithelial-like cells called decidual cells in a process called decidualization. This differentiation continues more broadly in the endometrium and forms the decidual tissue during early pregnancy. The cells undergoing decidualization as well as the resulting decidual cells, support successful implantation and placentation during early pregnancy. This study was carried out to identify new potentially important long non-coding RNA (lncRNA) genes that may play a role in human endometrial stromal fibroblast cells (hESF) undergoing decidualization in vitro, and several were found. The expression of nine was further characterized. One of these, AC027288.3, showed a dramatic increase in the expression of hESF cells undergoing decidualization. When AC027288.3 expression was targeted, the ability of the cells to undergo decidualization as determined by the expression of decidualization marker protein-coding genes was significantly altered. The most affected markers of decidualization whose expression was significantly reduced were FOXO1, FZD4, and INHBA. Therefore, AC027288.3 may be a major upstream regulator of the WNT-FOXO1 pathway and activin-SMAD3 pathways previously shown as critical for hESF decidualization. Finally, we explored possible regulators of AC027288.3 expression during human ESF decidualization. Expression was regulated by cAMP and progesterone. Our results suggest that AC027288.3 plays a role in hESF decidualization and identifies several other lncRNA genes that may also play a role.


Assuntos
Decídua , Endométrio , Fibroblastos , RNA Longo não Codificante , Células Estromais , Humanos , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fibroblastos/metabolismo , Fibroblastos/citologia , Decídua/metabolismo , Decídua/citologia , Endométrio/citologia , Endométrio/metabolismo , Células Estromais/metabolismo , Células Estromais/citologia , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Gravidez , Adulto , Diferenciação Celular/genética
3.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731846

RESUMO

Activated TGFß signaling in the tumor microenvironment, which occurs independently of epithelial cancer cells, has emerged as a key driver of tumor progression in late-stage colorectal cancer (CRC). This study aimed to elucidate the contribution of TGFß-activated stroma to serrated carcinogenesis, representing approximately 25% of CRCs and often characterized by oncogenic BRAF mutations. We used a transcriptional signature developed based on TGFß-responsive, stroma-specific genes to infer TGFß-dependent stromal activation and conducted in silico analyses in 3 single-cell RNA-seq datasets from a total of 39 CRC samples and 12 bulk transcriptomic datasets consisting of 2014 CRC and 416 precursor samples, of which 33 were serrated lesions. Single-cell analyses validated that the signature was expressed specifically by stromal cells, effectively excluding transcriptional signals derived from epithelial cells. We found that the signature was upregulated during malignant transformation and cancer progression, and it was particularly enriched in CRCs with mutant BRAF compared to wild-type counterparts. Furthermore, across four independent precursor datasets, serrated lesions exhibited significantly higher levels of TGFß-responsive stromal activation compared to conventional adenomas. This large-scale analysis suggests that TGFß-dependent stromal activation occurs early in serrated carcinogenesis. Our study provides novel insights into the molecular mechanisms underlying CRC development via the serrated pathway.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas B-raf , Células Estromais , Fator de Crescimento Transformador beta , Microambiente Tumoral , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Células Estromais/metabolismo , Células Estromais/patologia , Microambiente Tumoral/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Mutação , Transcriptoma , Transdução de Sinais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Análise de Célula Única , Perfilação da Expressão Gênica , Adenoma/genética , Adenoma/patologia , Adenoma/metabolismo
4.
Cell Commun Signal ; 22(1): 257, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711089

RESUMO

Benign prostatic hyperplasia (BPH) is a multifactorial disease in which abnormal growth factor activation and embryonic reawakening are considered important factors. Here we demonstrated that the aberrant activation of transforming growth factor ß (TGF-ß)/Rho kinase 1 (ROCK1) increased the stemness of BPH tissue by recruiting mesenchymal stem cells (MSCs), indicating the important role of embryonic reawakening in BPH. When TGF-ß/ROCK1 is abnormally activated, MSCs are recruited and differentiate into fibroblasts/myofibroblasts, leading to prostate stromal hyperplasia. Further research showed that inhibition of ROCK1 activation suppressed MSC migration and their potential for stromal differentiation. Collectively, our findings suggest that abnormal activation of TGF-ß/ROCK1 regulates stem cell lineage specificity, and the small molecule inhibitor GSK269962A could target ROCK1 and may be a potential treatment for BPH.


Assuntos
Células-Tronco Mesenquimais , Hiperplasia Prostática , Fator de Crescimento Transformador beta , Quinases Associadas a rho , Quinases Associadas a rho/metabolismo , Masculino , Hiperplasia Prostática/patologia , Hiperplasia Prostática/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular , Próstata/patologia , Próstata/metabolismo , Movimento Celular , Camundongos , Células Estromais/metabolismo , Células Estromais/patologia
5.
Front Endocrinol (Lausanne) ; 15: 1368494, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745948

RESUMO

Decidualisation, the process whereby endometrial stromal cells undergo morphological and functional transformation in preparation for trophoblast invasion, is often disrupted in women with polycystic ovary syndrome (PCOS) resulting in complications with pregnancy and/or infertility. The transcription factor Wilms tumour suppressor 1 (WT1) is a key regulator of the decidualization process, which is reduced in patients with PCOS, a complex condition characterized by increased expression of androgen receptor in endometrial cells and high presence of circulating androgens. Using genome-wide chromatin immunoprecipitation approaches on primary human endometrial stromal cells, we identify key genes regulated by WT1 during decidualization, including homeobox transcription factors which are important for regulating cell differentiation. Furthermore, we found that AR in PCOS patients binds to the same DNA regions as WT1 in samples from healthy endometrium, suggesting dysregulation of genes important to decidualisation pathways in PCOS endometrium due to competitive binding between WT1 and AR. Integrating RNA-seq and H3K4me3 and H3K27ac ChIP-seq metadata with our WT1/AR data, we identified a number of key genes involved in immune response and angiogenesis pathways that are dysregulated in PCOS patients. This is likely due to epigenetic alterations at distal enhancer regions allowing AR to recruit cofactors such as MAGEA11, and demonstrates the consequences of AR disruption of WT1 in PCOS endometrium.


Assuntos
Endométrio , Síndrome do Ovário Policístico , Receptores Androgênicos , Proteínas WT1 , Humanos , Feminino , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/patologia , Endométrio/metabolismo , Endométrio/patologia , Proteínas WT1/metabolismo , Proteínas WT1/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Células Estromais/metabolismo , Células Estromais/patologia , Adulto , Sequências Reguladoras de Ácido Nucleico
6.
Clin Exp Med ; 24(1): 99, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748269

RESUMO

Current clinical guidelines limit surgical intervention to patients with cT1-2N0M0 small cell lung cancer (SCLC). Our objective was to reassess the role of surgery in SCLC management, and explore novel prognostic indicators for surgically resected SCLC. We reviewed all patients diagnosed with SCLC from January 2011 to April 2021 in our institution. Survival analysis was conducted using the Kaplan-Meier method, and independent prognostic factors were assessed through the Cox proportional hazard model. In addition, immunohistochemistry (IHC) staining was performed to evaluate the predictive value of selected indicators in the prognosis of surgically resected SCLC patients. In the study, 177 SCLC patients undergoing surgical resection were ultimately included. Both univariate and multivariate Cox analysis revealed that incomplete postoperative adjuvant therapy emerged as an independent risk factor for adverse prognosis (p < 0.001, HR 2.96). Survival analysis revealed significantly superior survival among pN0-1 patients compared to pN2 patients (p < 0.0001). No significant difference in postoperative survival was observed between pN1 and pN0 patients (p = 0.062). Patients with postoperative stable disease (SD) exhibited lower levels of tumor inflammatory cells (TIC) (p = 0.0047) and IFN-γ expression in both area and intensity (p < 0.0001 and 0.0091, respectively) compared to those with postoperative progressive disease (PD). Conversely, patients with postoperative SD showed elevated levels of stromal inflammatory cells (SIC) (p = 0.0453) and increased counts of CD3+ and CD8+ cells (p = 0.0262 and 0.0330, respectively). Survival analysis indicated that high levels of SIC, along with low levels of IFN-γ+ cell area within tumor tissue, may correlate positively with improved prognosis in surgically resected SCLC (p = 0.017 and 0.012, respectively). In conclusion, the present study revealed that the patients with pT1-2N1M0 staging were a potential subgroup of SCLC patients who may benefit from surgery. Complete postoperative adjuvant therapy remains an independent factor promoting a better prognosis for SCLC patients undergoing surgical resection. Moreover, CD3, CD8, IFN-γ, TIC, and SIC may serve as potential indicators for predicting the prognosis of surgically resected SCLC.


Assuntos
Complexo CD3 , Imuno-Histoquímica , Interferon gama , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Prognóstico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/mortalidade , Interferon gama/metabolismo , Idoso , Carcinoma de Pequenas Células do Pulmão/cirurgia , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/mortalidade , Carcinoma de Pequenas Células do Pulmão/metabolismo , Complexo CD3/metabolismo , Antígenos CD8/metabolismo , Antígenos CD8/análise , Adulto , Biomarcadores Tumorais/análise , Análise de Sobrevida , Idoso de 80 Anos ou mais , Estimativa de Kaplan-Meier , Células Estromais/patologia , Células Estromais/metabolismo
7.
Stem Cell Res Ther ; 15(1): 139, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735988

RESUMO

The concept of "stemness" incorporates the molecular mechanisms that regulate the unlimited self-regenerative potential typical of undifferentiated primitive cells. These cells possess the unique ability to navigate the cell cycle, transitioning in and out of the quiescent G0 phase, and hold the capacity to generate diverse cell phenotypes. Stem cells, as undifferentiated precursors endow with extraordinary regenerative capabilities, exhibit a heterogeneous and tissue-specific distribution throughout the human body. The identification and characterization of distinct stem cell populations across various tissues have revolutionized our understanding of tissue homeostasis and regeneration. From the hematopoietic to the nervous and musculoskeletal systems, the presence of tissue-specific stem cells underlines the complex adaptability of multicellular organisms. Recent investigations have revealed a diverse cohort of non-hematopoietic stem cells (non-HSC), primarily within bone marrow and other stromal tissue, alongside established hematopoietic stem cells (HSC). Among these non-HSC, a rare subset exhibits pluripotent characteristics. In vitro and in vivo studies have demonstrated the remarkable differentiation potential of these putative stem cells, known by various names including multipotent adult progenitor cells (MAPC), marrow-isolated adult multilineage inducible cells (MIAMI), small blood stem cells (SBSC), very small embryonic-like stem cells (VSELs), and multilineage differentiating stress enduring cells (MUSE). The diverse nomenclatures assigned to these primitive stem cell populations may arise from different origins or varied experimental methodologies. This review aims to present a comprehensive comparison of various subpopulations of multipotent/pluripotent stem cells derived from stromal tissues. By analysing isolation techniques and surface marker expression associated with these populations, we aim to delineate the similarities and distinctions among stromal tissue-derived stem cells. Understanding the nuances of these tissue-specific stem cells is critical for unlocking their therapeutic potential and advancing regenerative medicine. The future of stem cells research should prioritize the standardization of methodologies and collaborative investigations in shared laboratory environments. This approach could mitigate variability in research outcomes and foster scientific partnerships to fully exploit the therapeutic potential of pluripotent stem cells.


Assuntos
Células-Tronco Multipotentes , Células-Tronco Pluripotentes , Humanos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Diferenciação Celular , Células Estromais/citologia , Células Estromais/metabolismo , Animais
8.
Proc Natl Acad Sci U S A ; 121(20): e2322688121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709925

RESUMO

Brain metastatic breast cancer is particularly lethal largely due to therapeutic resistance. Almost half of the patients with metastatic HER2-positive breast cancer develop brain metastases, representing a major clinical challenge. We previously described that cancer-associated fibroblasts are an important source of resistance in primary tumors. Here, we report that breast cancer brain metastasis stromal cell interactions in 3D cocultures induce therapeutic resistance to HER2-targeting agents, particularly to the small molecule inhibitor of HER2/EGFR neratinib. We investigated the underlying mechanisms using a synthetic Notch reporter system enabling the sorting of cancer cells that directly interact with stromal cells. We identified mucins and bulky glycoprotein synthesis as top-up-regulated genes and pathways by comparing the gene expression and chromatin profiles of stroma-contact and no-contact cancer cells before and after neratinib treatment. Glycoprotein gene signatures were also enriched in human brain metastases compared to primary tumors. We confirmed increased glycocalyx surrounding cocultures by immunofluorescence and showed that mucinase treatment increased sensitivity to neratinib by enabling a more efficient inhibition of EGFR/HER2 signaling in cancer cells. Overexpression of truncated MUC1 lacking the intracellular domain as a model of increased glycocalyx-induced resistance to neratinib both in cell culture and in experimental brain metastases in immunodeficient mice. Our results highlight the importance of glycoproteins as a resistance mechanism to HER2-targeting therapies in breast cancer brain metastases.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Glicocálix , Quinolinas , Receptor ErbB-2 , Células Estromais , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Glicocálix/metabolismo , Animais , Linhagem Celular Tumoral , Células Estromais/metabolismo , Células Estromais/patologia , Quinolinas/farmacologia , Camundongos , Comunicação Celular , Técnicas de Cocultura , Mucina-1/metabolismo , Mucina-1/genética , Transdução de Sinais , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores
9.
FASEB J ; 38(9): e23622, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703029

RESUMO

Endometriosis (EMs)-related infertility commonly has decreased endometrial receptivity and normal decidualization is the basis for establishing and maintaining endometrial receptivity. However, the potential molecular regulatory mechanisms of impaired endometrial decidualization in patients with EMs have not been fully clarified. We confirmed the existence of reduced endometrial receptivity in patients with EMs by scanning electron microscopy and quantitative real-time PCR. Here we identified an lncRNA, named BMPR1B-AS1, which is significantly downregulated in eutopic endometrium in EMs patients and plays an essential role in decidual formation. Furthermore, RNA pull-down, mass spectrometry, RNA immunoprecipitation, and rescue analyses revealed that BMPR1B-AS1 positively regulates decidual formation through interaction with the RNA-binding protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Downregulation of IGF2BP2 led to a decreased stability of BMPR1B-AS1 and inhibition of activation of the SMAD1/5/9 pathway, an inhibitory effect which diminished decidualization in human endometrial stromal cells (hESCs) decidualization. In conclusion, our identified a novel regulatory mechanism in which the IGF2BP2-BMPR1B-AS1-SMAD1/5/9 axis plays a key role in the regulation of decidualization, providing insights into the potential link between abnormal decidualization and infertility in patients with EMs, which will be of clinical significance for the management and treatment of infertility in patients with EMs.


Assuntos
Endometriose , RNA Longo não Codificante , Proteínas de Ligação a RNA , Adulto , Feminino , Humanos , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Decídua/metabolismo , Decídua/patologia , Endometriose/metabolismo , Endometriose/genética , Endometriose/patologia , Endométrio/metabolismo , Endométrio/patologia , Infertilidade Feminina/metabolismo , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Células Estromais/metabolismo , Proteínas Smad , Adulto Jovem
10.
Commun Biol ; 7(1): 530, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704457

RESUMO

Cell stiffness is regulated by dynamic interaction between ras-related C3 botulinum toxin substrate 1 (Rac1) and p21 protein-activated kinase 1 (PAK1) proteins, besides other biochemical and molecular regulators. In this study, we investigated how the Placental Growth Factor (PlGF) changes endometrial mechanics by modifying the actin cytoskeleton at the maternal interface. We explored the global effects of PlGF in endometrial stromal cells (EnSCs) using the concerted approach of proteomics, atomic force microscopy (AFM), and electrical impedance spectroscopy (EIS). Proteomic analysis shows PlGF upregulated RhoGTPases activating proteins and extracellular matrix organization-associated proteins in EnSCs. Rac1 and PAK1 transcript levels, activity, and actin polymerization were significantly increased with PlGF treatment. AFM further revealed an increase in cell stiffness with PlGF treatment. The additive effect of PlGF on actin polymerization was suppressed with siRNA-mediated inhibition of Rac1, PAK1, and WAVE2. Interestingly, the increase in cell stiffness by PlGF treatment was pharmacologically reversed with pravastatin, resulting in improved trophoblast cell invasion. Taken together, aberrant PlGF levels in the endometrium can contribute to an altered pre-pregnancy maternal microenvironment and offer a unifying explanation for the pathological changes observed in conditions such as pre-eclampsia (PE).


Assuntos
Endométrio , Fator de Crescimento Placentário , Pré-Eclâmpsia , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP , Feminino , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Humanos , Pré-Eclâmpsia/metabolismo , Gravidez , Endométrio/metabolismo , Endométrio/patologia , Fator de Crescimento Placentário/metabolismo , Fator de Crescimento Placentário/genética , Células Estromais/metabolismo , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Microscopia de Força Atômica
11.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 482-489, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645846

RESUMO

Metabolic reprogramming plays a critical role in tumorigenesis and tumor progression. The metabolism and the proliferation of tumors are regulated by both intrinsic factors within the tumor and the availability of metabolites in the tumor microenvironment (TME). The metabolic niche within the TME is primarily orchestrated at 3 levels: 1) the regulation of tumor metabolism by factors intrinsic to the tumors, 2) the interaction between tumor cells and T cells, macrophages, and stromal cells, and 3) the metabolic heterogeneity of tumor cells within the tissue space. Herein, we provided a concise overview of the various metabolic regulatory modes observed in tumor cells. Additionally, we extensively analyzed the interaction between tumor cells and other cells within the TME, as well as the metabolic characteristics and functions of different types of cells. Ultimately, this review provides a theoretical basis and novel insights for the precision treatment of tumors.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Macrófagos/metabolismo , Comunicação Celular , Linfócitos T/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia
12.
Cells ; 13(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38667295

RESUMO

Decorin (DCN), a member of the small leucine-rich proteoglycan gene family, is secreted from stromal fibroblasts with non-cell-autonomous anti-breast-cancer effects. Therefore, in the present study, we sought to elucidate the function of decorin in breast stromal fibroblasts (BSFs). We first showed DCN downregulation in active cancer-associated fibroblasts (CAFs) compared to their adjacent tumor counterpart fibroblasts at both the mRNA and protein levels. Interestingly, breast cancer cells and the recombinant IL-6 protein, both known to activate fibroblasts in vitro, downregulated DCN in BSFs. Moreover, specific DCN knockdown in breast fibroblasts modulated the expression/secretion of several CAF biomarkers and cancer-promoting proteins (α-SMA, FAP- α, SDF-1 and IL-6) and enhanced the invasion/proliferation abilities of these cells through activation of the STAT3/AUF1 signaling. Furthermore, DCN-deficient fibroblasts promoted the epithelial-to-mesenchymal transition and stemness processes in BC cells in a paracrine manner, which increased their resistance to cisplatin. These DCN-deficient fibroblasts also enhanced angiogenesis and orthotopic tumor growth in mice in a paracrine manner. On the other hand, ectopic expression of DCN in CAFs suppressed their active features and their paracrine pro-carcinogenic effects. Together, the present findings indicate that endogenous DCN suppresses the pro-carcinogenic and pro-metastatic effects of breast stromal fibroblasts.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Decorina , Regulação para Baixo , Interleucina-6 , Fator de Transcrição STAT3 , Transdução de Sinais , Decorina/metabolismo , Decorina/genética , Humanos , Fator de Transcrição STAT3/metabolismo , Feminino , Interleucina-6/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Regulação para Baixo/genética , Ribonucleoproteína Nuclear Heterogênea D0/metabolismo , Fibroblastos/metabolismo , Células Estromais/metabolismo , Linhagem Celular Tumoral , Carcinogênese/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Mama/patologia , Mama/metabolismo
13.
J Immunother Cancer ; 12(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38642938

RESUMO

BACKGROUND: Colitis caused by checkpoint inhibitors (CPI) is frequent and is treated with empiric steroids, but CPI colitis mechanisms in steroid-experienced or refractory disease are unclear. METHODS: Using colon biopsies and blood from predominantly steroid-experienced CPI colitis patients, we performed multiplexed single-cell transcriptomics and proteomics to nominate contributing populations. RESULTS: CPI colitis biopsies showed enrichment of CD4+resident memory (RM) T cells in addition to CD8+ RM and cytotoxic CD8+ T cells. Matching T cell receptor (TCR) clonotypes suggested that both RMs are progenitors that yield cytotoxic effectors. Activated, CD38+ HLA-DR+ CD4+ RM and cytotoxic CD8+ T cells were enriched in steroid-experienced and a validation data set of steroid-naïve CPI colitis, underscoring their pathogenic potential across steroid exposure. Distinct from ulcerative colitis, CPI colitis exhibited perturbed stromal metabolism (NAD+, tryptophan) impacting epithelial survival and inflammation. Endothelial cells in CPI colitis after anti-TNF and anti-cytotoxic T-lymphocyte-associated antigen 4 (anti-CTLA-4) upregulated the integrin α4ß7 ligand molecular vascular addressin cell adhesion molecule 1 (MAdCAM-1), which may preferentially respond to vedolizumab (anti-α4ß7). CONCLUSIONS: These findings nominate CD4+ RM and MAdCAM-1+ endothelial cells for targeting in specific subsets of CPI colitis patients.


Assuntos
Linfócitos T CD8-Positivos , Colite , Humanos , Células Endoteliais , Inibidores do Fator de Necrose Tumoral , Colite/induzido quimicamente , Colite/tratamento farmacológico , Linfócitos T CD4-Positivos , Esteroides/farmacologia , Esteroides/uso terapêutico , Células Estromais
14.
Stem Cell Res Ther ; 15(1): 119, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659070

RESUMO

BACKGROUND: Adipose stromal cells (ASC) are a form of mesenchymal stromal cells that elicit effects primarily via secreted factors, which may have advantages for the treatment of injury or disease. Several previous studies have demonstrated a protective role for MSC/ASC on mitigating acute kidney injury but whether ASC derived factors could hasten recovery from established injury has not been evaluated. METHODS: We generated a concentrated secretome (CS) of human ASC under well-defined conditions and evaluated its ability to improve the recovery of renal function in a preclinical model of acute kidney injury (AKI) in rats. 24 h following bilateral ischemia/reperfusion (I/R), rats were randomized following determination of plasma creatinine into groups receiving vehicle -control or ASC-CS treatment by subcutaneous injection (2 mg protein/kg) and monitored for evaluation of renal function, structure and inflammation. RESULTS: Renal function, assessed by plasma creatinine levels, recovered faster in ASC-CS treated rats vs vehicle. The most prominent difference between the ASC-CS treated vs vehicle was observed in rats with the most severe degree of initial injury (Pcr > 3.0 mg/dl 24 h post I/R), whereas rats with less severe injury (Pcr < 2.9 mg/dl) recovered quickly regardless of treatment. The quicker recovery of ASC-treated rats with severe injury was associated with less tissue damage, inflammation, and lower plasma angiopoietin 2. In vitro, ASC-CS attenuated the activation of the Th17 phenotype in lymphocytes isolated from injured kidneys. CONCLUSIONS: Taken together, these data suggest that ASC-CS represents a potent therapeutic option to improve established AKI.


Assuntos
Injúria Renal Aguda , Inflamação , Injúria Renal Aguda/terapia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Ratos , Humanos , Inflamação/patologia , Inflamação/metabolismo , Masculino , Secretoma/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Ratos Sprague-Dawley , Injeções Subcutâneas , Rim/metabolismo , Rim/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/terapia , Células Estromais/metabolismo
15.
Soft Matter ; 20(16): 3483-3498, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38587658

RESUMO

A breast-cancer tumor develops within a stroma, a tissue where a complex extracellular matrix surrounds cells, mediating the cancer progression through biomechanical and -chemical cues. Current materials partially mimic the stromal matrix in 3D cell cultures but methods for measuring the mechanical properties of the matrix at cell-relevant-length scales and stromal-stiffness levels are lacking. Here, to address this gap, we developed a characterization approach that employs probe-based microrheometry and Bayesian modeling to quantify length-scale-dependent mechanics and mechanical heterogeneity as in the stromal matrix. We examined the interpenetrating network (IPN) composed of alginate scaffolds (for adjusting mechanics) and type-1 collagen (a stromal-matrix constituent). We analyzed viscoelasticity: absolute-shear moduli (stiffness/elasticity) and phase angles (viscous and elastic characteristics). We determined the relationship between microrheometry and rheometry information. Microrheometry reveals lower stiffness at cell-relevant scales, compared to macroscale rheometry, with dependency on the length scale (10 to 100 µm). These data show increasing IPN stiffness with crosslinking until saturation (≃15 mM of Ca2+). Furthermore, we report that IPN stiffness can be adjusted by modulating collagen concentration and interconnectivity (by polymerization temperature). The IPNs are heterogeneous structurally (in SEM) and mechanically. Interestingly, increased alginate crosslinking changes IPN heterogeneity in stiffness but not in phase angle, until the saturation. In contrast, such changes are undetectable in alginate scaffolds. Our nonlinear viscoelasticity analysis at tumor-cell-exerted strains shows that only the softer IPNs stiffen with strain, like the stromal-collagen constituent. In summary, our approach can quantify the stromal-matrix-related viscoelasticity and is likely applicable to other materials in 3D culture.


Assuntos
Alginatos , Matriz Extracelular , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Alginatos/química , Técnicas de Cultura de Células em Três Dimensões , Viscosidade , Células Estromais/citologia , Células Estromais/metabolismo , Elasticidade , Alicerces Teciduais/química , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Fenômenos Biomecânicos , Reologia , Modelos Biológicos , Teorema de Bayes
16.
Sci Rep ; 14(1): 8321, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594471

RESUMO

Endometrial fibrosis is the histologic appearance of intrauterine adhesion (IUA). Emerging evidences demonstrated umbilical cord mesenchymal stem cell-derived exosomes (UCMSC-exo) could alleviate endometrial fibrosis. But the specific mechanism is not clear. In this study, we explored the effect of UCMSC-exo on endometrial fibrosis, and investigated the possible role of miR-140-3p/FOXP1/Smad axis in anti-fibrotic properties of UCMSC-exo. UCMSC-exo were isolated and identified. Transforming growth factor-ß (TGF-ß) was used to induce human endometrial stromal cell (HESC) fibrosis. Dual luciferase assay was performed to verify the relationship between miR-140-3p and FOXP1. The expressions of fibrotic markers, SIP1, and p-Smad2/p-Smad3 in HESCs stimulated with UCMSC-exo were detected by western blot. In addition, the effects of miR-140-3p mimic, miR-140-3p inhibitor and FOXP1 over-expression on endometrial fibrosis were assessed. The isolated UCMSC-exo had a typical cup-shaped morphology and could be internalized into HESCs. The expressions of fibrotic markers were significantly increased by TGF-ß, which was reversed by UCMSC-exo. MiR-140-3p in UCMSC-exo ameliorated TGf-ß-induced HESCs fibrosis. FOXP1 was identified as the direct target of miR-140-3p, which could inversely regulate miR-140-3p's function on HESCs fibrosis. Furthermore, we demonstrated that miR-140-3p in UCMSC-exo regulated Smad signal pathway to exert the anti-fibrotic effect in HESCs. The anti-fibrotic effect of UCMSC-derived exosomes against HESC fibrosis was at least partially achieved by miR-140-3p/FOXP1/Smad axis.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Doenças Uterinas , Humanos , Feminino , Exossomos/genética , Células Estromais , Fator de Crescimento Transformador beta , Cordão Umbilical , MicroRNAs/genética , Fibrose , Proteínas Repressoras , Fatores de Transcrição Forkhead/genética
17.
Sci Rep ; 14(1): 8404, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600158

RESUMO

The survival of leukemic cells is significantly influenced by the bone marrow microenvironment, where stromal cells play a crucial role. While there has been substantial progress in understanding the mechanisms and pathways involved in this crosstalk, limited data exist regarding the impact of leukemic cells on bone marrow stromal cells and their potential role in drug resistance. In this study, we identify that leukemic cells prime bone marrow stromal cells towards osteoblast lineage and promote drug resistance. This biased differentiation of stroma is accompanied by dysregulation of the canonical Wnt signaling pathway. Inhibition of Wnt signaling in stroma reversed the drug resistance in leukemic cells, which was further validated in leukemic mice models. This study evaluates the critical role of leukemic cells in establishing a drug-resistant niche by influencing the bone marrow stromal cells. Additionally, it highlights the potential of targeting Wnt signaling in the stroma by repurposing an anthelmintic drug to overcome the microenvironment-mediated drug resistance.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Animais , Camundongos , Via de Sinalização Wnt , Leucemia Mieloide Aguda/metabolismo , Medula Óssea/metabolismo , Células Estromais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Resistência a Medicamentos , Células da Medula Óssea , Microambiente Tumoral/fisiologia
19.
Sci Rep ; 14(1): 7726, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565619

RESUMO

Decidualization can be induced by culturing human endometrial stromal cells (ESCs) with several decidualization stimuli, such as cAMP, medroxyprogesterone acetate (MPA) or Estradiol (E2). However, it has been unclear how decidualized cells induced by different stimuli are different. We compared transcriptomes and cellular functions of decidualized ESCs induced by different stimuli (MPA, E2 + MPA, cAMP, and cAMP + MPA). We also investigated which decidualization stimulus induces a closer in vivo decidualization. Differentially expressed genes (DEGs) and altered cellular functions by each decidualization stimuli were identified by RNA-sequence and gene-ontology analysis. DEGs was about two times higher for stimuli that use cAMP (cAMP and cAMP + MPA) than for stimuli that did not use cAMP (MPA and E2 + MPA). cAMP-using stimuli altered the cellular functions including angiogenesis, inflammation, immune system, and embryo implantation whereas MPA-using stimuli (MPA, E2 + MPA, and cAMP + MPA) altered the cellular functions associated with insulin signaling. A public single-cell RNA-sequence data of the human endometrium was utilized to analyze in vivo decidualization. The altered cellular functions by in vivo decidualization were close to those observed by cAMP + MPA-induced decidualization. In conclusion, decidualized cells induced by different stimuli have different transcriptome and cellular functions. cAMP + MPA may induce a decidualization most closely to in vivo decidualization.


Assuntos
Endométrio , Acetato de Medroxiprogesterona , Feminino , Humanos , Células Cultivadas , Endométrio/metabolismo , Acetato de Medroxiprogesterona/farmacologia , Células Estromais/metabolismo , Expressão Gênica , RNA/metabolismo , Decídua/metabolismo
20.
Biomolecules ; 14(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38672430

RESUMO

Bovine serum albumin (BSA) plays a crucial role in cell culture media, influencing cellular processes such as proliferation and differentiation. Although it is commonly included in chondrogenic differentiation media, its specific function remains unclear. This study explores the effect of different BSA concentrations on the chondrogenic differentiation of human adipose-derived stromal/stem cells (hASCs). hASC pellets from six donors were cultured under chondrogenic conditions with three BSA concentrations. Surprisingly, a lower BSA concentration led to enhanced chondrogenesis. The degree of this effect was donor-dependent, classifying them into two groups: (1) high responders, forming at least 35% larger, differentiated pellets with low BSA in comparison to high BSA; (2) low responders, which benefitted only slightly from low BSA doses with a decrease in pellet size and marginal differentiation, indicative of low intrinsic differentiation potential. In all cases, increased chondrogenesis was accompanied by hypertrophy under low BSA concentrations. To the best of our knowledge, this is the first study showing improved chondrogenicity and the tendency for hypertrophy with low BSA concentration compared to standard levels. Once the tendency for hypertrophy is understood, the determination of BSA concentration might be used to tune hASC chondrogenic or osteogenic differentiation.


Assuntos
Diferenciação Celular , Condrogênese , Células-Tronco Mesenquimais , Soroalbumina Bovina , Humanos , Condrogênese/efeitos dos fármacos , Soroalbumina Bovina/farmacologia , Soroalbumina Bovina/química , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/citologia , Animais , Bovinos , Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Meios de Cultura/farmacologia , Células Estromais/efeitos dos fármacos , Células Estromais/citologia , Células Estromais/metabolismo , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA